
CEDRIC Laboratory

Conservatoire National des Arts et Métiers

http://quasar.cnam.fr/

QUASAR
A Tool For Automatic Verification Of Concurrent Programs

Team :
Olivier Alzeari

Sami Evangelista

Claude Kaiser

Christophe Pajault

Jean-François Pradat-Peyre

Pierre Rousseau

Nicolas Treves

Concurrent Software

Model-Checking

Quasar is an automatic concurrent software analysis
tool based on this promising method that uses the application source code for

generating and validating a semantic model (a high-level colored
Petri net).

Quasar is presented to the user as a simple tool although it is in reality a composition

of tools that can be used independently. Quasar takes as input a concurrent
program with a property specification. If the property is not

verified by the program, Quasar displays a faulty sequence of ac-
tions leading to the property violation. Note that no knowledge about Petri nets

is required by the user.

Quasar follows a four step process :

❶ Slicing: the aim of this step is to remove parts of the source code which are

not related to the investigated property.

❷ Modeling: translation of the sliced program into a high-level Petri net.

❸ Model-Checking: Analysis of the model by combining structural

techniques (like Petri nets reductions) and finite state verification methods (like

temporal logic formula verification).

❹ Error-reporting: when the target property is not verified, the state

in which the application is faulty is displayed and a report indicates the sequence of

program actions that ends by invalidating the property.

Thus, if the specified property is violated, a graphical error-report with the sequence

of actions that leads to this violation is displayed. Our graphical error-report is based

on the XUL language.

Concurrent

Program

Property

Specification

XUL-Based

Error-

Display

Graphical Error-Report

Displaying

–
E
rr

or
-re

port displayer
–

–
E
rror-report disp

la

ye
r

–

Graphical

Error-Display

Based On XUL

Once the XML error-report is built, our graphical error-report

displayer.

• XML-based error report input

• Easy-to-read graphical display with XUL

Concurrent Program Slicing

With Yastnost
The slicing step consists in an automatic extraction of the input source code which

is related to the property to verify. Yastnost is a concurrent

program slicer.

The aim of this step is to remove parts of the source code which

are not related to the investigated property. This contributes to

generate a smaller model compared to the one corresponding to the whole program, but

which has the same behavior according to the investigated property.

Y
a
st

n
os

t
– Yastnost –

Y

astn
o
st

–
a

C
o
n

current Progra
m

S
li
c
e
r

–

Concurrent

Program Slicing

Reduced

Program

Model-Checking With

Helena

–
H

el
en

a
– Helena – H

elen
a

–

a
H

ig

h
LEvel Net A

na
ly

z
e
r

Efficient

Model-Checking

XML

Error-Report

Model checking is an automatic technique to verify properties of finite state systems by

inspecting all the possible configurations of the system. In the current version, Helena can be

used for the verification of state properties and deadlock freeness.

When Helena finds a state that violates the specified property,

the faulty execution is reported to the user.

Main features:

• High level formalism

• Optimized state space storage method

• The stubborn set method (since version 1.0.1)

• Distributed-memory Model-Checking

• Implementation of structural abstractions techniques (transitions agglomerations)

Program Translation Into

A High-Level Colored

Petri Net
This step translates the simplified (sliced) program into a formal

model. The target formalism used is colored Petri nets because

their analysis may combine several techniques that are supported

by experienced tools and that we continue to develop successfully.

For translating a program into a Petri net we use patterns.

Each element of the language has a corresponding pattern (or

sub-net). These sub-nets allow a hierarchical construction

since meta-nets can be used to abstract other (list of) sub-net(s).

<id,var>
<id,1>

<id,var>
<id,res>

<id,res>

<id,res>

P.CALL

P.RETURN

P.CALL

P.RETURN

<id,param>

<id,f(param)>

<id,res>

<id,param>

<id,param>

<id,param>

<id,var>

<id,var>

<id,res>

<id,res>

<id,1>

<id,res>

<id,res>

<id,param>

<id,f(param)>

<id,param>

<id,param>

<id,param>

P.RETURN

P.CALL

Example of meta-net composition.

The single final net corresponding to the whole program is produced

using two basic constructors : the substitution (that substitutes a

meta-net by a concrete sub-net) and the composition (that merges

two different sub-nets into an unique one).

–
T
ran

slator–Transla
to

r
–

T
ra

n
sl
a
to

r
–

Tr
anslator – Tran

sla
to

rTranslation Into

A High-Level

Colored Petri Net

High-level

Colored

Petri Net

This is the pattern for a loop statement. Tran-

sitions Then and Else are protected by a guard

meaning that they cannot be fired unless the con-

dition is true. Statements of the loop are ab-

stracted by a meta-net.

<X> <X>

<X> <X>

<I> <I>

<X> <X>

[I > N] [I <= N]

for I in 0..N loop

<X>

<X>

<I++>

−− Statements of the loop
....

end loop;

ThenElse <0>

U
S
E
R

–
V

IE
W

IN
T

E
R

N
A

L
–
V

IE
W

