
Technical Report

—–

Short presentation of Quasar

—–

S. Evangelista, C. Kaiser, J.F. Pradat-Peyre et P. Rousseau

CEDRIC CNAM Paris

292, rue St Martin 75003 Paris

{evangeli, kaiser, peyre, rousseau}@cnam.fr

February 5, 2004

1 What is Quasar ?

Quasar, is a tool which allows analysing and validating concurrent programs.
In other words, Quasar is Quickly Undertaking the Analysis of Safety and
providing Anomaly Report when necessary.

2 What is a correct concurrent program and how can

it be validated ?

A correct concurrent program must satisfy two classes of property : safety and
liveness.

Safety properties assert that nothing ”bad” will ever happen during an exe-
cution (that is, the program will never enter a ”bad” state). Example of safety
property are the respect of mutual exclusion, the denial of placing a new item
in a full buffer, the freedom from deadlock, the insurance that all dynamically
allocated resources will return to the resource allocator (i.e., the number of
dynamic resources remain constant).

Liveness properties assert that something ”good” will eventually happen
during the execution (that is, the program will eventually enter a ”good” state)
Example of liveness property are the absence of livelock, fairness, absence of
indefinite postponement or starvation.

Owing to its advantages (such as design clarity, reactive facilities, distribu-
tion ability, scaling capabilities,...), concurrent programming is growing more

1



and more in importance, and appears in a wide range of applications, even for
applications needing a high degree of safety. However, the application behaviour
induced by concurrency is intrinsically difficult to validate.

Traditional methods, using specifications or tests, do not give full satisfac-
tion. Specifications are often situated at a too high level of view and thus far
from the final details of the source code and/or of the target platform, which
can induce huge behavior modifications. Exhaustively testing is a long, tiresome
process and it is often very difficult to reproduce the concurrent execution which
leads to the error. Moreover testing gives only probabilistic results that depend
of the coverage of the implemented tests. These experienced drawbacks, due to
the indeterminism inherent to concurrency, push engineers to limit the use of
concurrency, and thus unfortunately to limit also the facilities that concurrency
provides.

Another approach consists in using the source code as the source formalism
and to elaborate from it a model on which properties can be validated. Alike a
compiler that builds a syntactic tree which allows to verify the program syntax
before generating the code, this method builds a model which allows to verify
the semantic of concurrency of the program before running it.

This approach bears also additional advantages. There is not necessary to
transcribe the application in a different language for specification, validation
or testing purposes, and this avoids transcription errors or semantic loss. The
approach is also usable for analysing the full and final application program
after linking all its imported components. This is very important when the
checked properties, like absence of deadlock, are global properties which are not
decomposable and which cannot be proven by parts.

3 How does Quasar proceed ?

Quasar is an automatic concurrent program analysis tool based on this promis-
ing method that uses the application source code for generating and validating
a semantic model. Quasar follows a four step process :

1. Automatic extraction of the source code which is related to the property
to verify. The aim of this step is to remove those parts of the source code
which are not related to the investigated property. This contributes to
generate a model which is smaller than the one corresponding to the whole
program, but which has the same behavior according to the investigated
property. This smaller model will be easier to analyze in the next steps.
This first step is called slicing.

2. Translation of the simplified program into a formal model. The target
formalism used is colored Petri nets because their analysis may combine
several techniques that are supported by experienced tools and that we
continue to develop successfully. For translating an Ada program into
a Petri net we use patterns. Each element of the Ada language has a
corresponding pattern (or sub-net). These sub-nets allow a hierarchical

2



construction since meta-nets can be used to abstract other (list of) sub-
net(s). For example, the sub-net of the loop statement contains a meta-
net abstracting the statements of the loop. We produce The final net
corresponding to the whole (simplified) program is produced using two
basic constructors : the substitution (that substitutes a meta-net by a
concrete sub-net) and the composition (that merges two different sub-nets
into an unique one).

3. Analysis of the model by combining structural techniques (like Petri nets
reductions) and finite state verification methods (like temporal logic for-
mula verification). The efficiency of this combination, added to the gain
obtained by the slicing step, allows to analyze complex and relatively large
programs.

4. Construction of a report. When the target property is not verified, the
state in which the application is faulty is displayed and a report indicates
the sequence of program actions that ends by invalidating the property.

4 What are the benefits of using Quasar ?

Quasar is able to cover most of the concurrency features and a large part of a
language like Ada. It shows good performances when analysing the concurrency
part of non-trivial application programs. This reflects the fact that, although
intrinsically more complex, unfamiliar and prone to errors than most other
aspects of programming, the part of an application program which is concerned
by concurrency remains hopefully small. The slicing step of Quasar (the first
step) eliminates this large part of the application program which is not concerned
with concurrency. And moreover the efficiency of the reduction techniques and
state verification methods of the third step of Quasar succeeds in restraining
the combinatorial explosion of states.

For applications which specification includes a high degree of safety, the use
of Quasar permits to avoid to set up complex and cumbersome specification
or test methods which must be iterative whereas each little change in the origi-
nal code source can induce a huge difference in the application behavior. Using
Quasar allows to analyse applications that have already been implemented but
that have never been validated, avoiding to elaborate a posteriori the specifi-
cations of the application. Furthermore, combining the use of Quasar with
specification and test methods will result in a higher level of safety as in fact
these approaches provide complementary insights.

5 What is the current implementation state ?

The current implementation of Quasar accepts Ada concurrent programs cor-
responding to a large part of the Ada language (see ”Supported Language”

3



section). It’s based on the implementation of the ASIS for GNAT Ada 95 com-
piler. The graphic part has been designed with GtkAda. In the current version
of Quasar we use Maria or Prod as model checker.

4


